

An Introduction to the ECHP for New Users - Day 3

Dorothy Watson, Bertrand Maître, Bernadette Ryan

> EPUNet Lunch and Connecting ECHP Lears

Day 3 Outline

- Longitudinal Issues Tracing Rules
- Attrition
- Cases available for panel analysis Presentation by Richard Layte
- More on Comparability of Data

Sample Persons and Tracing

- Sample person: someone who was a member of an ECHP household in the first wave
- Or a child born since the first wave to a mother who is a sample person
- Sample persons who move are traced
 - all members of a sample household are interviewed
 - even non-sample persons to get total household income
 - So new people can be added to the panel if they move into a sample household or a sample person moves in with them

Attrition: Extent 1994-1998 (1)

- Focus on loss of individuals due to Household Non-response
 - Some individuals lost because of nonresponse to personal interview
- Ignore people out of scope
 - died, moved outside EU, moved to institution
- Notice that extent of attrition increases as number of waves increases

Attrition: Extent 1994-1998

	N waves	N cases	% retained
Belgium*	5	8,938	71
Denmark	5	7,465	58
Germany	3	12,270	89
Greece	5	15,765	69
Spain	5	22,481	64
France	5	18,642	68
Ireland	5	14,075	57
Italy	5	21,359	76
Luxembourg	3	2,793	89
The Netherlands*	5	13,029	72
Austria	4	9,399	74
Portugal	5	14,156	82
Finland	2	11,180	92
United-Kingdom	3	14,143	61
German-National *	5	15,848	79
Uk-National source*	5	12,595	81
Total	5	214,138	73

Patterns of Attrition (1)

In panel survey, we have much more information on individuals lost through attrition than on initial non-respondents

Patterns of Attrition (3)

Associated with

- Changing address
- · Missing information in earlier wave
- Change of interviewer
- Smaller effects:
 - Younger, single adults
 - In Northern countries: lower income, lower education
 - In Southern countries and Ireland: higher income, higher education

Patterns of Attrition (4)

- Most attrition is random with respect to observables
- Based on examining characteristics of individual in previous wave(s)

- Less obvious: If non-random, can bias results in later waves
 - attrition on observables: e.g. sex, characteristics in earlier wave, change in circumstances between waves (measured)
 - attrition on non-observables: e.g. change in circumstances between waves (unmeasured)

Impact of Attrition (2)

- In general, not as large as might expect
- Model of w1-w5 attrition (Watson 2003) including
 - · Country and Wave
 - Individual characteristics (age, sex, marital status, education, economic status, socioeconomic group)
 - Household Characteristics (household size, type,tenure, stability of residence, main income source, household income decile, poverty status)

Impact of Attrition (3)

- The McKelvey-Zaviona pseudo-R² statistic shows all of the variables included in the final model account for only 11 per cent of the variance in attrition.
- Of this total, almost half (4.9 per cent) is due to differences in the level of attrition between countries and across waves.
- Most attrition, then, is not associated with the large number of substantive independent variables in the model.

Impact of Attrition (4)

- In general, not as large as might expect
 - even though attrition is patterned, impact on sample structure is small
 - most attrition is random and effects decline over life of panel
 - impact on sample estimates and coefficients from multivariate models also tend to be small

Cases available for panel analysis			
	N. Persons (all ages)	N. Personal Interviews	
Wave 1-2	179,464	132,220	
Wave 2-3	187,573	139,594	
Waves 1 to 7	99,516	70,966	
Waves 1 to 8	92,350	65,622	

Other Issues affecting comparability

- Income in France and Finland
- Survey and Register data
- Pensions
- Sweden: cross-sectional data only

Income: Gross and Net

- In France and Finland, Income components are given as Gross amounts
 - But total personal income and total household income given as net amounts
 - Net/Gross conversion factor used
- Sweden lacks some detail on components.

Gross components -- Total Net In most countries: • HI100=HI110+HI120+HI130+HI140 • HI100= SUM(PI100) + HI140 In France: HI100=HI020*(HI110+HI120+HI130+HI140) In Finland (Hi140 is already net) HI100=HI020*(HI110+HI120+HI130)+HI140

Matching Across Waves

- Link File: shows situation of person in each wave
 Person info
 - Fixed information: dob, gender, pid, sample person
 - Wave specific variables: resid status in Wi, pers elegible for interw in Wi, whether interviewed...
 - Wave-specific information on person's household:
 HID in Wi, sample status in Wi, location in Wi, household size in Wi,...
 - Movement in and out: new entrants, leavers,

Exercise 1 Results

Change in Activity Status, W2-W5

	8 Iroland	51 Garmany	55 Luvambourg	57 UK
1.00 Always working	38%	43%	Luxenibourg	47%
2.00 Never working	41%	43% 33%	45%	29%
3.00 Sometimes working	21%	24%	11%	24%

SR

Exercise 2: Changes in Household Characteristics

- Identify individuals (any age) present in households interviewed in all waves from 2 to 5,
- Match to household file to find level of economic strain (HF002) in each wave
- Examine change level of economic strain by country

Exercise 2 Syntax (1)"Match across waves.SPS" Exercise 2 Syntax (2) * match to household file for each wave to find level of get file=linksav. economic strain. * identify people interviewed in all * wave i. waves from 2 to 5. compute hid=hidi. compute in2 5=0. sort cases by country hid . if hfnres2 eq 11 and hfnres3 eq 11 and match files/file=*/in=inlink hfnres4 eq 11 and hfnres5 eq 11 /table=wihsav/in=inwih in2_5=1. /rename (hf002=straini) /keep=country hid pid birthyy to pfnres8 straini (other s) /by=country hid. fre var=in2_5. * check match. fre var=inlinki inwih straini. select if in2_5 eq 1.

Exercise 2. Re	sults		
LACICISE 2. Re	Suns		
Thongo in Economia Studi	n (Difficult	v making and a m	oot) W2 W
Change in Economic Strai	n (Difficult	y making ends m	eet), W2-W
Change in Economic Strai	n (Difficult 8 Ireland	y making ends m	eet), W2-W
Change in Economic Strai	n (Difficult 8 Ireland 7%	y making ends m 55 Luxembourg 1%	eet), W2-W3
Change in Economic Strai	n (Difficult 8 Ireland 7% 57%	y making ends m 55 Luxembourg 1% 81%	eet), W2-W3 57 UK 2% 79%

Lab: More Within-Wave Matching

- Matching Parents to Children
 Unit=Child
 - -----
- Matching Children to Parents
 - Unit= Parent

Matching Individuals to Individuals Matching Parents to Children

Exercise 3: Matching parents to children find mean age of children and parents, wave 1

Unit of Analysis = Child

Method:

- Begin with relationship file
- identify parent/child pairs
- aggregate to child level
- Match ages from register (X 3)

Exercise 3 Results

Average Ages of Parents and Children by Country

		51 Germany-	57 UK- National
	8 Ireland	National source	source
Age parent 1	48	43	42
Age parent 2	44	40	39
Age of child	16	14	13

Exercise 4 Syntax (4)

* step 4: sort and aggregate to level of pid1 (the parent).

sort cases by country hid pid1.

aggregate outfile=*/presorted/break= country hid pid1 /ncases=N /agynkid 'Age f youngest child' = min(rd003p2) /agolkid 'Age of oldest child' =max(rd003p2) /ownage 'Own age' =first(rd003p1) /punder18=pin(rd003p2,0,17) /punder5=pin(rd003p2,0,4)

/punder15=pin(rd003p2,0,14).

var labels nunder18 'N children under 18 /nunder15 'N children under 15' /nunder5 'N children under 5.

fre var=nunder18 nunder15 nunder5.

